Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Supermassive black holes can experience super-Eddington peak mass fallback rates following the tidal disruption of a star. The theoretical expectation is that part of the infalling material is expelled by means of an accretion disk wind, whose observational signature includes blueshifted absorption lines of highly ionized species in X-ray spectra. To date, however, only one such ultrafast outflow (UFO) has been reported in the tidal disruption event (TDE) ASASSN–14li. Here we report on the discovery of a transient absorption-like signature in X-ray spectra of the TDE AT2020ksf/Gaia20cjk (at a redshift ofz= 0.092), following an X-ray brightening ∼230 days after UV/optical peak. We find that while no statistically significant absorption features are present initially, they appear on a timescale of several days and remain detected up to 770 days after peak. Simple thermal continuum models, combined with a power-law or neutral absorber, do not describe these features well. Adding a partial-covering, low-velocity ionized absorber improves the fit at early times but fails at late times. A high-velocity (vw∼ 42,000 km s−1), ionized absorber (UFO) provides a good fit to all data. The few-day timescale of variability is consistent with expectations for a clumpy wind. We discuss several scenarios that could explain the X-ray delay, as well as the potential for larger-scale wind feedback. The serendipitous nature of the discovery could suggest a high incidence of UFOs in TDEs, alleviating some of the tension with theoretical expectations.more » « less
- 
            Context.NGC 1068 is the most observed radio-quiet active galactic nucleus (AGN) in polarimetry, yet its high-energy polarization has never been probed before due to a lack of dedicated polarimeters. Aims.Using the first X-ray polarimeter sensitive enough to measure the polarization of AGNs, we want to probe the orientation and geometric arrangement of (sub)parsec-scale matter around the X-ray source. Methods.We used the Imaging X-ray Polarimetry Explorer (IXPE) satellite to measure, for the first time, the 2–8 keV polarization of NGC 1068. We pointed IXPE at the target for a net exposure time of 1.15 Ms, in addition to using twoChandrasnapshots of ∼10 ks each in order to account for the potential impact of several ultraluminous X-ray sources (ULXs) within IXPE’s field of view. Results.We measured a 2–8 keV polarization degree of 12.4% ± 3.6% and an electric vector polarization angle of 101° ± 8° at a 68% confidence level. If we exclude the spectral region containing bright Fe K lines and other soft X-ray lines where depolarization occurs, the polarization fraction rises to 21.3% ± 6.7% in the 3.5–6.0 keV band, with a similar polarization angle. The observed polarization angle is found to be perpendicular to the parsec-scale radio jet. Using a combinedChandraand IXPE analysis plus multiwavelength constraints, we estimated that the circumnuclear “torus” may sustain a half-opening angle of 50–55° (from the vertical axis of the system). Conclusions.Thanks to IXPE, we have measured the X-ray polarization of NGC 1068 and found comparable results, both in terms of the polarization angle orientation with respect to the radio jet and the torus half-opening angle, to the X-ray polarimetric measurement achieved for the other archetypal Compton-thick AGN: the Circinus galaxy. Probing the geometric arrangement of parsec-scale matter in extragalactic objects is now feasible thanks to X-ray polarimetry.more » « less
- 
            A NICER look at the state transitions of the black hole candidate MAXI J1535−571 during its reflaresABSTRACT The black hole candidate and X-ray binary MAXI J1535−571 was discovered in 2017 September. During the decay of its discovery outburst, and before returning to quiescence, the source underwent at least four reflaring events, with peak luminosities of ∼1035–36 erg s−1 (d/4.1 kpc)2. To investigate the nature of these flares, we analysed a sample of NICER (Neutron star Interior Composition Explorer) observations taken with almost daily cadence. In this work, we present the detailed spectral and timing analysis of the evolution of the four reflares. The higher sensitivity of NICER at lower energies, in comparison with other X-ray detectors, allowed us to constrain the disc component of the spectrum at ∼0.5 keV. We found that during each reflare the source appears to trace out a q-shaped track in the hardness–intensity diagram similar to those observed in black hole binaries during full outbursts. MAXI J1535−571 transits between the hard state (valleys) and softer states (peaks) during these flares. Moreover, the Comptonized component is undetected at the peak of the first reflare, while the disc component is undetected during the valleys. Assuming the most likely distance of 4.1 kpc, we find that the hard-to-soft transitions take place at the lowest luminosities ever observed in a black hole transient, while the soft-to-hard transitions occur at some of the lowest luminosities ever reported for such systems.more » « less
- 
            We report on a comprehensive analysis of simultaneous X-ray polarimetric and spectral data of the bright atoll source GX 9+9 with the Imaging X-ray Polarimetry Explorer (IXPE) and NuSTAR . The source is significantly polarized in the 4–8 keV band, with a degree of 2.2% ± 0.5% (uncertainty at the 68% confidence level). The NuSTAR broad-band spectrum clearly shows an iron line, and is well described by a model including thermal disc emission, a Comptonized component, and reflection. From a spectro-polarimetric fit, we obtain an upper limit to the polarization degree of the disc of 4% (at the 99% confidence level), while the contribution of Comptonized and reflected radiation cannot be conclusively separated. However, the polarization is consistent with resulting from a combination of Comptonization in a boundary or spreading layer, plus reflection off the disc, which significantly contributes in any realistic scenario.more » « less
- 
            ABSTRACT X Persei is a persistent low-luminosity X-ray pulsar of period of ≈ 835 s in a Be binary system. The field strength at the neutron star surface is not known precisely, but indirect signs indicate a magnetic field above 1013 G, which makes the object one of the most magnetized known X-ray pulsars. Here we present the results of observations X Persei performed with the Imaging X-ray Polarimetry Explorer (IXPE). The X-ray polarization signal was found to be strongly dependent on the spin phase of the pulsar. The energy-averaged polarization degree in 3–8 keV band varied from several to ∼20 per cent over the pulse with a phase dependence resembling the pulse profile. The polarization angle shows significant variation and makes two complete revolutions during the pulse period, resulting in nearly nil pulse-phase averaged polarization. Applying the rotating vector model to the IXPE data we obtain the estimates for the rotation axis inclination and its position angle on the sky, as well as for the magnetic obliquity. The derived inclination is close to the orbital inclination, reported earlier for X Persei. The polarimetric data imply a large angle between the rotation and magnetic dipole axes, which is similar to the result reported recently for the X-ray pulsar GRO J1008−57. After eliminating the effect of polarization angle rotation over the pulsar phase using the best-fitting rotating vector model, the strong dependence of the polarization degree with energy was discovered, with its value increasing from 0 at ∼2 keV to 30per cent at 8 keV.more » « less
- 
            ABSTRACT A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities.more » « lessFree, publicly-accessible full text available May 15, 2026
- 
            ABSTRACT We present an X-ray spectropolarimetric analysis of the bright Seyfert galaxy NGC 4151. The source has been observed with the Imaging X-ray Polarimetry Explorer (IXPE) for 700 ks, complemented with simultaneous XMM–Newton (50 ks) and NuSTAR (100 ks) pointings. A polarization degree Π = 4.9 ± 1.1 per cent and angle Ψ = 86° ± 7° east of north (68 per cent confidence level) are measured in the 2–8 keV energy range. The spectropolarimetric analysis shows that the polarization could be entirely due to reflection. Given the low reflection flux in the IXPE band, this requires, however, a reflection with a very large (>38 per cent) polarization degree. Assuming more reasonable values, a polarization degree of the hot corona ranging from ∼4 to ∼8 per cent is found. The observed polarization degree excludes a ‘spherical’ lamppost geometry for the corona, suggesting instead a slab-like geometry, possibly a wedge, as determined via Monte Carlo simulations. This is further confirmed by the X-ray polarization angle, which coincides with the direction of the extended radio emission in this source, supposed to match the disc axis. NGC 4151 is the first active galactic nucleus with an X-ray polarization measure for the corona, illustrating the capabilities of X-ray polarimetry and IXPE in unveiling its geometry.more » « less
- 
            ABSTRACT We report spectro-polarimetric results of an observational campaign of the bright neutron star low-mass X-ray binary Cyg X-2 simultaneously observed by IXPE, NICER, and INTEGRAL. Consistently with previous results, the broad-band spectrum is characterized by a lower-energy component, attributed to the accretion disc with kTin ≈ 1 keV, plus unsaturated Comptonization in thermal plasma with temperature kTe = 3 keV and optical depth τ ≈ 4, assuming a slab geometry. We measure the polarization degree in the 2–8 keV band P = 1.8 ± 0.3 per cent and polarization angle ϕ = 140° ± 4°, consistent with the previous X-ray polarimetric measurements by OSO-8 as well as with the direction of the radio jet which was earlier observed from the source. While polarization of the disc spectral component is poorly constrained with the IXPE data, the Comptonized emission has a polarization degree P = 4.0 ± 0.7 per cent and a polarization angle aligned with the radio jet. Our results strongly favour a spreading layer at the neutron star surface as the main source of the polarization signal. However, we cannot exclude a significant contribution from reflection off the accretion disc, as indicated by the presence of the iron fluorescence line.more » « less
- 
            Mapping the circumnuclear regions of the Circinus galaxy with the Imaging X-ray Polarimetry ExplorerABSTRACT We report on the Imaging X-ray Polarimetry Explorer (IXPE) observation of the closest and X-ray brightest Compton-thick active galactic nucleus (AGN), the Circinus galaxy. We find the source to be significantly polarized in the 2–6 keV band. From previous studies, the X-ray spectrum is known to be dominated by reflection components, both neutral (torus) and ionized (ionization cones). Our analysis indicates that the polarization degree is 28 ± 7 per cent (at 68 per cent confidence level) for the neutral reflector, with a polarization angle of 18° ± 5°, roughly perpendicular to the radio jet. The polarization of the ionized reflection is unconstrained. A comparison with Monte Carlo simulations of the polarization expected from the torus shows that the neutral reflector is consistent with being an equatorial torus with a half-opening angle of 45°–55°. This is the first X-ray polarization detection in a Seyfert galaxy, demonstrating the power of X-ray polarimetry in probing the geometry of the circumnuclear regions of AGNs, and confirming the basic predictions of standard Unification Models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
